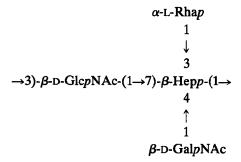
STRUCTURAL STUDIES OF THE O-ANTIGEN FROM Vibrio cholerae O:21*

AKBAR ALI ANSARI**, LENNART KENNE, BENGT LINDBERG,

Department of Organic Chemistry, Arrhenius Laboratory, University of Stockholm, S-106 91 Stockholm (Sweden)


BJÖRN GUSTAFSSON, AND TORD HOLME

Department of Bacteriology, Karolinska Institute, S-104 01 Stockholm (Sweden)

(Received September 24th, 1985; accepted for publication, October 16th, 1985)

ABSTRACT

The O-antigen from Vibrio cholerae O:21 has been investigated, using n.m.r. spectroscopy, methylation analysis, and Smith degradation as the main methods. It is concluded that the O-antigen is composed of tetrasaccharide repeating-units having the following structure (in which Hep = D-glycero-D-manno-heptose).

INTRODUCTION

The species Vibrio cholerae is divided into several serogroups on the basis of their O-antigens. The disease Asiatic cholera is caused only by strains belonging to serogroup O:1. In addition, there are at least 72 additional serogroups of V. cholerae, collectively known as non-O:1 V. cholerae. In the past, the non-O:1 V. cholerae have been inappropriately designated as nonagglutinating (NAG) or noncholera vibrios (NCV).

Non-O:1 V. cholerae have caused sporadic cases of gastrointestinal illness and have occasionally been isolated from persons with extraintestinal disease². A

^{*}Dedicated to Professor N. K. Kochetkov.

^{**}Permanent address: HEJ Research Institute of Chemistry, Karachi University, Karachi No: 32, Pakistan.

cholera-like enterotoxin having biological and immunological properties identical to those of cholera toxin, but with different physiochemical properties, has been isolated from some non-O:1 *V. cholerae*³. We now report structural studies of the O-antigen from *V. cholerae* O:21.

RESULTS AND DISCUSSION

Treatment of the V. cholerae O:21 LPS with aqueous acetic acid of pH 3.1 at 100° for 6 h gave lipid A and a polysaccharide PS. These hydrolysis conditions are more severe than those required for most LPS, but similar to those used⁴ for V. cholerae O:1.

On acid hydrolysis, the PS yielded approximately equimolar amounts of L-rhamnose, 2-amino-2-deoxy-D-glucose, 2-amino-2-deoxy-D-galactose, and a heptose. The amino sugars are N-acetylated in the PS, as shown by n.m.r. data (see below). The absolute configurations of the first three sugars were determined using the procedure devised by Gerwig et al.⁵. The alditol acetate of the heptose had the same retention time in g.l.c. as that obtained from D-glycero-D-manno-heptose, but was well separated from the corresponding L-glycero-D-manno derivative. The heptose was transformed into the methyl glycoside penta-acetate by methanolysis followed by acetylation. The ¹H-n.m.r. spectrum of this compound demonstrated that the aglycon was axial and that the configuration of C-2-C-5 was manno, which was confirmed by comparison with data for methyl α -D-mannopyranoside tetraacetate (Table I). The acetylated glycoside had $[\alpha]_{578}^{24}$ +74° (c 0.1, chloroform). This value is not very accurate because of the small amount of substance available, but the positive value demonstrates that the glycoside is an α -D-manno derivative. From the combined evidence, it is concluded that the glycoside is methyl D-glyceroα-D-manno-heptopyranoside and, consequently, that the sugar is D-glycero-Dmanno-heptose.

TABLE I ${}^{\rm I}$ H-n.m.r. data for fully acetylated methyl d-glycero- α -d-manno-heptopyranoside (A) and methyl α -d-mannopyranoside (B)

Compound	Chemical shifts (δ)										
	H-1	Н-2	Н-3	H-4	H-5	Н-6	H-6'	H-7	H-7'	OCH ₃	
Α	4.684	5.198	5.302	5.274	3.969	5,194	-	4.270	4.439	3.393	
<u>B</u>	4.723	5.244	5.339	5.284	3.985	4.125	4.294			3.414	
	Coupling constants (Hz)										
	J _{1.2}	J ₂₇	$\mathbf{J}_{3,4}$	J _{4.5}	J _{5,6}	J _{5.6}	J _{6.6} .	J _{6.7}	J _{6,7}	J _{7,7}	
Α	1.7	3.4	9.8	9.2	2.9			3.4	6.5	12.1	
В	1.7	3.4	10.0	10.0	2.7	5.4	12.2	_			

TABLE II

The ¹³C- and ¹-H-n.m.r. spectra of the PS revealed that it contained O-acetyl groups, the ratio between N-acetyl and O-acetyl being ~2:0.2. In order to obtain simpler n.m.r. spectra, the PS was O-deacetylated. The ¹H- and ¹³C-n.m.r. spectra together with a two-dimensional C,H chemical shift-correlated spectrum then contained, inter alia, signals for four anomeric carbons and protons at δ 101.96 (J_{CH} 162 Hz), 4.413 ($J_{1.2}$ 8.1 Hz); 101.93 ($J_{C.H}$ 160 Hz), 4.607 ($J_{1.2}$ 8.2 Hz); 101.38 ($J_{C.H}$ 160 Hz), 4.657 ($J_{1.2}$ not resolved, $\nu_{1/2}$ 3.7 Hz); and 97.28 ($J_{C,H}$ 170 Hz), 5.005 ($J_{1.2}$ not resolved, $\nu_{1/2}$ 3.1 Hz). A fifth signal in the anomeric region at δ 4.596 (m) was assigned to H-5 of the L-rhamnose residue by a COSY spectrum. The ¹³C-n.m.r. spectrum further showed signals for two N-acetyl groups (δ 175.48, 175.34, 23.24, 23.20), two N-substituted carbons (δ 55.36, 53.78), and a C-methyl group (δ 16.35). The ¹H-n.m.r. spectrum further showed signals for two N-acetyl groups (δ 2.072 and 2.051) and a C-methyl group (δ 1.289, $J_{5.6}$ 6.5 Hz). From the results discussed above, it is concluded that the PS is composed of tetrasaccharide repeating-units containing one residue each of 2-acetamido-2-deoxy-D-glucose, 2-acetamido-2deoxy-D-galactose, L-rhamnose, and D-glycero-D-manno-heptose. The two amino sugars and one of the sugars with the manno configuration are β -pyranosidic, and the fourth sugar is α -pyranosidic.

Methylation analysis of the PS (Table II, column A) demonstrated that the L-rhamnopyranosyl and 2-acetamido-2-deoxy-D-galactopyranosyl residues are terminal, that the 2-acetamido-2-deoxy-D-glucopyranosyl residue is linked through O-3, and that the heptopyranosyl residue is linked through O-3, O-4, and O-7.

The terminal sugars in the PS were eliminated by Smith degradation⁶ (periodate oxidation, borohydride reduction, and hydrolysis with acid under mild conditions). Methylation analysis of the product (Table II, column B) indicated that it is a linear polysaccharide, in which the heptose is linked through O-7. The 1 H-n.m.r. spectrum of the product showed, *inter alia*, signals for two anomeric protons at δ 4.669 ($J_{1,2}$ 7.4 Hz) and 4.655 ($J_{1,2}$ 1.6 Hz), demonstrating that both

METHYLATION ANALYSIS OF ORIGINAL AND MODIFIED V. cholerae O:21 POLYSACCHARIDE

Sugara	T^b	Detector response (%) ^c				
		A	В	C		
2,3,4-Rha	0.46	27	-	10		
2,3,4,6-Hep	3.8		55	8		
2,3,4,6-GalNAc	5.3	17		28		
2,3,6-Hep	6.3			21		
2,4,6-GlcNAc	7.8	24	45	21		
2,6-Hep	8.8	32		12		

^a2,3,4-Rha = 2,3,4-tri-*O*-methyl-L-rhamnose, *etc.*; Hep = D-*glycero*-D-*manno*-heptose. ^bRetention time of the corresponding alditol acetate, relative to 1,5-di-*O*-acetyl-2,3,4,6-tetra-*O*-methyl-D-glucitol, on an SE-54 fused-silica capillary column at 150°. ^cA, PS; B, Smith-degraded PS; C, PS partially degraded by treatment with acid.

sugars are β -linked, as in 1. The ¹³C-n.m.r. spectrum showed, *inter alia*, signals at δ 102.08, 101.63 (anomeric carbons), 55.93 (C-N), 175.19, and 23.13 (OCCH₃). As the heptosyl residue is β -linked, the L-rhamnopyranosyl group in the original PS is consequently α -linked.

$$\rightarrow$$
3)- β -D-Glc p NAc-(1 \rightarrow 7)- β -Hep p -(1 \rightarrow 1

The PS was treated with 0.2M trifluoroacetic acid in deuterium oxide at 70° and the reaction monitored by 1 H-n.m.r. spectroscopy. When the signal at δ 5.005, assigned to H-1 of the α -L-rhamnopyranosyl group, was considerably reduced, the polymeric material was recovered and subjected to methylation analysis (Table II, column C). The decrease of 2,3,4-tri-O-methyl-L-rhamnose and 2,6-di-O-methylheptose, as compared to the analysis of the original PS, and the appearance of 2,3,6-tri-O-methylheptose, demonstrate that the α -L-rhamnopyranosyl group is linked to O-3 of the heptosyl residue. This could also be inferred from the 13 C-n.m.r. spectrum of the PS. The signal for C-1 of the α -L-rhamnopyranosyl group appears at high field (δ 97.28), which demonstrates that it is linked to O-3 of a sugar having the D-manno configuration 7,8 .

From the results discussed above, it is evident that the O-antigen of *Vibrio cholerae* O:21 is composed of tetrasaccharide repeating-units with the structure 2 (Hep = D-glycero-D-manno-heptose).

$$\alpha$$
-L-Rhap

1

 \downarrow
3

 \rightarrow 3)- β -D-Glc p NAc-(1 \rightarrow 7)- β -Hep p -(1 \rightarrow
4

 \uparrow
1

 β -D-Gal p NAc

In the ¹H-n.m.r. spectrum of the original PS, the signals for O-acetyl groups appeared at δ 2.211 and 2.185. The O-acetyl group giving the stronger signal (δ 2.211) was located at O-4 of the α -L-rhamnopyranosyl group, as the signal for H-6 at δ 1.289 ($J_{5.6}$ 6.5 Hz) was partially shifted to δ 1.170 ($J_{5.6}$ 6.3 Hz). The corresponding shifts for H-6 of methyl α -D-glucopyranoside on acetylation at O-2, O-3, or O-4 were +0.02, +0.02, and -0.16 p.p.m., respectively. A small signal in the ¹H-n.m.r. spectrum at δ 1.300, which overlapped the signal at δ 1.289, indicated that some α -L-rhamnopyranosyl groups were acetylated at position 3. It is expected that the O-acetyl groups should be distributed between positions 2, 3, and 4 of the rhamnosyl group because of O-acetyl migration. In agreement with this conclusion,

the signal for C-6 of this residue at δ 16.35 was partially shifted to δ 16.15. Small negative shifts (0.1–0.3 p.p.m.) for C-6 were also observed on monoacetylation of methyl α -D-glucopyranoside at O-2, O-3, or O-4.

D-glycero-D-manno-Heptose, which is an intermediate in the biosynthesis of L-glycero-D-manno-heptose, is sometimes incorporated in the core of LPS. This, however, seems to be the first observation of its presence as a residue in the repeating unit of a bacterial antigen.

On treatment of an LPS with acid under mild conditions, it is split into lipid A and a polysaccharide because of the acid-labile glycosidic linkage of a 3-deoxy-D-manno-octulosonic acid (KDO) residue. The conditions used to split the V. cholerae O:1 LPS are more severe than for most other LPS, and it has been assumed that this LPS does not contain KDO. However, the 5-phosphate of KDO has recently been isolated after acid hydrolysis of V. cholerae O:1 LPS^{10,11}. The reason why the glycosidic linkage of KDO is more resistant to acid hydrolysis in this and some other LPS is not well understood.

EXPERIMENTAL

General methods. — Concentrations were performed under diminished pressure at <40° (bath) or at room temperature by flushing with air. For g.l.c., a Hewlett-Packard 5830A instrument fitted with a flame-ionisation detector was used. Separations of alditol acetates and partially methylated alditol acetates were performed on SE-54 fused-silica capillary columns either isothermally or using a temperature gradient of 150-220° at 2°/min. G.l.c.-m.s. was performed with a Hewlett-Packard 5970 instrument, using the above conditions. Identifications from mass spectra were unambiguous and will not be discussed.

Methylation analyses were performed essentially as previously described 12 . Products were recovered by reversed phase chromatography on Sep-Pak C_{18} cartridges 13 . The sample was diluted with an equal volume of water and applied to the cartridge. This was washed with water and acetonitrile—water (15:85), and the sample was then eluted with acetonitrile.

N.m.r. spectra of solutions in deuterium oxide were determined at 70° (13 C) or 85° (1 H) using a JEOL GX-400 instrument. Chemical shifts are reported in p.p.m., using internal 1,4-dioxane (δ 67.4; 13 C) and sodium 3-trimethylsilyl-propanoate- d_4 (1 H) as references.

Preparation of LPS and PS. — V. cholerae 109-68 (O:21) was cultivated in an aerated, stirred, 12-L fermentor at 37° and at a constant pH of 7.2, using a tryptone-yeast extract medium^{14,15}. LPS was extracted from the bacteria by the hot phenol-water method¹⁶ and purified by high-speed centrifugation as described earlier¹⁵.

The LPS (500 mg) in aqueous acetic acid of pH 3.1 was kept at 100° for 6 h, cooled, centrifuged, and freeze-dried. The product was fractionated on a column (90 \times 3 cm) of Sephadex G-50 that was irrigated with water. A void fraction

consisted of glycogen and the following fraction of PS (48 mg).

The PS was O-deacetylated by treatment with 2M aqueous ammonia for 14 h, followed by concentration and freeze-drying. It had $[\alpha]_{578}^{24}$ -54° (c 0.5, water).

Sugar analysis. — A solution of PS (1 mg) in 2M aqueous trifluoroacetic acid (0.5 mL) was kept in a closed vial at 120° for 1 h. The sugars in the hydrolysate were then converted into alditol acetates by conventional methods. The relative g.l.c. retention times at 170° were L-Rha 0.32, D-Glc 1.00, D-GlcNAc 14.2, D-GalNAc 16.2, and Hep 18.4.

Smith degradation of the PS. — A solution of the PS (45 mg) and sodium metaperiodate (100 mg) in 0.1M acetate buffer (pH 6, 7 mL) was kept in the dark at 5° for 56 h. Excess of periodate was then reduced with ethylene glycol, and the solution was dialysed overnight and freeze-dried. A solution of the product in water (3 mL) was treated with sodium borohydride (20 mg) for 4 h, and the polyalcohol was recovered by dialysis and freeze-drying. Sugar analysis of a small sample showed that all of the L-rhamnosyl and 2-acetamido-2-deoxy-D-galactosyl residues had been oxidised. A solution of the polyalcohol in 0.5M aqueous trifluoroacetic acid (7 mL) was kept at room temperature for 36 h, then diluted with water (25 mL), and freeze-dried. The modified PS, purified by chromatography on a Sephadex G-50 column, had $[\alpha]_{5/8}^{24}$ -31° (c 0.5, water).

Partial acid hydrolysis of the PS. — A solution of the PS (12 mg) in deuterium oxide, which was 0.2m with respect to trifluoroacetic acid, was kept in an n.m.r. tube at 70°. When the 1 H-n.m.r. signal at δ 5.005 had been considerably reduced, the solution was diluted with water and freeze-dried. Fractionation on a Sephadex G-25 column gave a polymeric fraction and L-rhamnose.

Characterisation of the heptose. — The PS obtained on Smith degradation was treated with methanolic M hydrogen chloride at 80° for 16 h. The acid was removed by repeated co-distillations with methanol, and a solution of the methanolysate was passed through a column of Dowex 50 (H⁺) resin which removed the amino sugar. The eluate was concentrated, the residue was acetylated, and the product was purified by chromatography on a column of silica gel irrigated with cthyl acetate-toluene (3:7).

ACKNOWLEDGMENTS

A scholarship to A.A.A. from the Swedish Institute is gratefully acknowledged. This work was supported by grants from the Swedish Medical Research Council (03X-02522 and 16X-656) and the National Swedish Board for Technical Development.

REFERENCES

- 1 R. SAKAZAKI, K. TAMURA, C. Z. GOMES, AND R. SEN, Jpn. J. Med. Sci. Biol., 23 (1970) 13-20.
- 2 P. A. BLAKE, Annu. Rev. Microbiol., 34 (1980) 341-367.
- 3 K. YAMAMOTO, Y. TAKEDA, T. MIWATANI, AND J. P. CRAIG, Infect. Immun., 41 (1983) 896-901.

- 4 L. KENNE, B. LINDBERG, P. UNGER, B. GUSTAFSSON, AND T. HOLME, Carbohydr. Res., 100 (1982) 341–349.
- 5 G. J. GERWIG, J. P. KAMERLING, AND J. F. G. VLIEGENTHART, Carbohydr. Res., 77 (1979) 1-7.
- 6 I. J. GOLDSTEIN, G. W. HAY, B. A. LEWIS, AND F. SMITH, Methods Carbohydr. Chem., 5 (1965) 361-370.
- 7 N. K. KOCHETKOV, O. S. CHIZHOV, AND A. S. SHASHKOV, Carbohydr. Res., 133 (1984) 173-185.
- 8 H. BAUMANN, P.-E. JANSSON, AND L. KENNE, J. Chem. Soc., Perkin Trans. 1, to be submitted.
- 9 G. D. F. JACKSON AND J. W. REDMOND, FEBS Lett., 13 (1971) 117-120.
- 10 H. Brade, C. Galanos, and O. Lüderitz, Eur. J. Biochem., 131 (1983) 195-200.
- 11 H. BRADE, J. Bacteriol., 161 (1985) 795-798.
- 12 P.-E. Jansson, L. Kenne, B. Lindberg, H. Liedgren, and J. Lönngren, Chem. Commun., Univ. Stockholm, (1976) 1-75.
- 13 T. J. WAEGHE, A. G. DARVILL, M. McNeil. AND P. Albersheim, Carbohydr. Res., 123 (1983) 281–304.
- 14 T. HOLME, S. ARVIDSON, B. LINDHOLM, AND B. PAVLU, Proc. Biochem., 5 (1970) 62-66.
- 15 B. Gustafsson, T. Holme, and A. Rosén, Infect. Immun., 38 (1982) 449-454.
- 16 O. WESTPHAL AND K. JANN, Methods Carbohydr. Chem., 5 (1965) 83.